mirror of
git://git.9front.org/plan9front/plan9front
synced 2025-01-12 11:10:06 +00:00
188 lines
6.3 KiB
C
188 lines
6.3 KiB
C
#pragma src "/sys/src/libmp"
|
|
#pragma lib "libmp.a"
|
|
|
|
#define _MPINT 1
|
|
|
|
/*
|
|
* the code assumes mpdigit to be at least an int
|
|
* mpdigit must be an atomic type. mpdigit is defined
|
|
* in the architecture specific u.h
|
|
*/
|
|
typedef struct mpint mpint;
|
|
|
|
struct mpint
|
|
{
|
|
int sign; /* +1 or -1 */
|
|
int size; /* allocated digits */
|
|
int top; /* significant digits */
|
|
mpdigit *p;
|
|
char flags;
|
|
};
|
|
|
|
enum
|
|
{
|
|
MPstatic= 0x01, /* static constant */
|
|
MPnorm= 0x02, /* normalization status */
|
|
MPtimesafe= 0x04, /* request time invariant computation */
|
|
MPfield= 0x08, /* this mpint is a field modulus */
|
|
|
|
Dbytes= sizeof(mpdigit), /* bytes per digit */
|
|
Dbits= Dbytes*8 /* bits per digit */
|
|
};
|
|
|
|
/* allocation */
|
|
void mpsetminbits(int n); /* newly created mpint's get at least n bits */
|
|
mpint* mpnew(int n); /* create a new mpint with at least n bits */
|
|
void mpfree(mpint *b);
|
|
void mpbits(mpint *b, int n); /* ensure that b has at least n bits */
|
|
mpint* mpnorm(mpint *b); /* dump leading zeros */
|
|
mpint* mpcopy(mpint *b);
|
|
void mpassign(mpint *old, mpint *new);
|
|
|
|
/* random bits */
|
|
mpint* mprand(int bits, void (*gen)(uchar*, int), mpint *b);
|
|
/* return uniform random [0..n-1] */
|
|
mpint* mpnrand(mpint *n, void (*gen)(uchar*, int), mpint *b);
|
|
|
|
/* conversion */
|
|
mpint* strtomp(char*, char**, int, mpint*); /* ascii */
|
|
int mpfmt(Fmt*);
|
|
char* mptoa(mpint*, int, char*, int);
|
|
mpint* letomp(uchar*, uint, mpint*); /* byte array, little-endian */
|
|
int mptole(mpint*, uchar*, uint, uchar**);
|
|
void mptolel(mpint *b, uchar *p, int n);
|
|
mpint* betomp(uchar*, uint, mpint*); /* byte array, big-endian */
|
|
int mptobe(mpint*, uchar*, uint, uchar**);
|
|
void mptober(mpint *b, uchar *p, int n);
|
|
uint mptoui(mpint*); /* unsigned int */
|
|
mpint* uitomp(uint, mpint*);
|
|
int mptoi(mpint*); /* int */
|
|
mpint* itomp(int, mpint*);
|
|
uvlong mptouv(mpint*); /* unsigned vlong */
|
|
mpint* uvtomp(uvlong, mpint*);
|
|
vlong mptov(mpint*); /* vlong */
|
|
mpint* vtomp(vlong, mpint*);
|
|
double mptod(mpint*); /* double */
|
|
mpint* dtomp(double, mpint*);
|
|
|
|
/* divide 2 digits by one */
|
|
void mpdigdiv(mpdigit *dividend, mpdigit divisor, mpdigit *quotient);
|
|
|
|
/* in the following, the result mpint may be */
|
|
/* the same as one of the inputs. */
|
|
void mpadd(mpint *b1, mpint *b2, mpint *sum); /* sum = b1+b2 */
|
|
void mpsub(mpint *b1, mpint *b2, mpint *diff); /* diff = b1-b2 */
|
|
void mpleft(mpint *b, int shift, mpint *res); /* res = b<<shift */
|
|
void mpright(mpint *b, int shift, mpint *res); /* res = b>>shift */
|
|
void mpmul(mpint *b1, mpint *b2, mpint *prod); /* prod = b1*b2 */
|
|
void mpexp(mpint *b, mpint *e, mpint *m, mpint *res); /* res = b**e mod m */
|
|
void mpmod(mpint *b, mpint *m, mpint *remainder); /* remainder = b mod m */
|
|
|
|
/* logical operations */
|
|
void mpand(mpint *b1, mpint *b2, mpint *res);
|
|
void mpbic(mpint *b1, mpint *b2, mpint *res);
|
|
void mpor(mpint *b1, mpint *b2, mpint *res);
|
|
void mpnot(mpint *b, mpint *res);
|
|
void mpxor(mpint *b1, mpint *b2, mpint *res);
|
|
void mptrunc(mpint *b, int n, mpint *res);
|
|
void mpxtend(mpint *b, int n, mpint *res);
|
|
void mpasr(mpint *b, int shift, mpint *res);
|
|
|
|
/* modular arithmetic, time invariant when 0≤b1≤m-1 and 0≤b2≤m-1 */
|
|
void mpmodadd(mpint *b1, mpint *b2, mpint *m, mpint *sum); /* sum = b1+b2 % m */
|
|
void mpmodsub(mpint *b1, mpint *b2, mpint *m, mpint *diff); /* diff = b1-b2 % m */
|
|
void mpmodmul(mpint *b1, mpint *b2, mpint *m, mpint *prod); /* prod = b1*b2 % m */
|
|
|
|
/* quotient = dividend/divisor, remainder = dividend % divisor */
|
|
void mpdiv(mpint *dividend, mpint *divisor, mpint *quotient, mpint *remainder);
|
|
|
|
/* return neg, 0, pos as b1-b2 is neg, 0, pos */
|
|
int mpcmp(mpint *b1, mpint *b2);
|
|
|
|
/* res = s != 0 ? b1 : b2 */
|
|
void mpsel(int s, mpint *b1, mpint *b2, mpint *res);
|
|
|
|
/* return n! */
|
|
mpint* mpfactorial(ulong n);
|
|
|
|
/* extended gcd return d, x, and y, s.t. d = gcd(a,b) and ax+by = d */
|
|
void mpextendedgcd(mpint *a, mpint *b, mpint *d, mpint *x, mpint *y);
|
|
|
|
/* res = b**-1 mod m */
|
|
void mpinvert(mpint *b, mpint *m, mpint *res);
|
|
|
|
/* bit counting */
|
|
int mpsignif(mpint*); /* number of sigificant bits in mantissa */
|
|
int mplowbits0(mpint*); /* k, where n = 2**k * q for odd q */
|
|
|
|
/* well known constants */
|
|
extern mpint *mpzero, *mpone, *mptwo;
|
|
|
|
/* sum[0:alen] = a[0:alen-1] + b[0:blen-1] */
|
|
/* prereq: alen >= blen, sum has room for alen+1 digits */
|
|
void mpvecadd(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *sum);
|
|
|
|
/* diff[0:alen-1] = a[0:alen-1] - b[0:blen-1] */
|
|
/* prereq: alen >= blen, diff has room for alen digits */
|
|
void mpvecsub(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *diff);
|
|
|
|
/* p[0:n] += m * b[0:n-1] */
|
|
/* prereq: p has room for n+1 digits */
|
|
void mpvecdigmuladd(mpdigit *b, int n, mpdigit m, mpdigit *p);
|
|
|
|
/* p[0:n] -= m * b[0:n-1] */
|
|
/* prereq: p has room for n+1 digits */
|
|
int mpvecdigmulsub(mpdigit *b, int n, mpdigit m, mpdigit *p);
|
|
|
|
/* p[0:alen+blen-1] = a[0:alen-1] * b[0:blen-1] */
|
|
/* prereq: alen >= blen, p has room for m*n digits */
|
|
void mpvecmul(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *p);
|
|
void mpvectsmul(mpdigit *a, int alen, mpdigit *b, int blen, mpdigit *p);
|
|
|
|
/* sign of a - b or zero if the same */
|
|
int mpveccmp(mpdigit *a, int alen, mpdigit *b, int blen);
|
|
int mpvectscmp(mpdigit *a, int alen, mpdigit *b, int blen);
|
|
|
|
/* divide the 2 digit dividend by the one digit divisor and stick in quotient */
|
|
/* we assume that the result is one digit - overflow is all 1's */
|
|
void mpdigdiv(mpdigit *dividend, mpdigit divisor, mpdigit *quotient);
|
|
|
|
/* playing with magnitudes */
|
|
int mpmagcmp(mpint *b1, mpint *b2);
|
|
void mpmagadd(mpint *b1, mpint *b2, mpint *sum); /* sum = b1+b2 */
|
|
void mpmagsub(mpint *b1, mpint *b2, mpint *sum); /* sum = b1+b2 */
|
|
|
|
/* chinese remainder theorem */
|
|
typedef struct CRTpre CRTpre; /* precomputed values for converting */
|
|
/* twixt residues and mpint */
|
|
typedef struct CRTres CRTres; /* residue form of an mpint */
|
|
|
|
#pragma incomplete CRTpre
|
|
|
|
struct CRTres
|
|
{
|
|
int n; /* number of residues */
|
|
mpint *r[1]; /* residues */
|
|
};
|
|
|
|
CRTpre* crtpre(int, mpint**); /* precompute conversion values */
|
|
CRTres* crtin(CRTpre*, mpint*); /* convert mpint to residues */
|
|
void crtout(CRTpre*, CRTres*, mpint*); /* convert residues to mpint */
|
|
void crtprefree(CRTpre*);
|
|
void crtresfree(CRTres*);
|
|
|
|
/* fast field arithmetic */
|
|
typedef struct Mfield Mfield;
|
|
|
|
struct Mfield
|
|
{
|
|
mpint;
|
|
int (*reduce)(Mfield*, mpint*, mpint*);
|
|
};
|
|
|
|
mpint *mpfield(mpint*);
|
|
|
|
Mfield *gmfield(mpint*);
|
|
Mfield *cnfield(mpint*);
|
|
|
|
#pragma varargck type "B" mpint*
|