1
0
Fork 0
mirror of https://github.com/9fans/plan9port.git synced 2025-01-24 11:41:58 +00:00
plan9port/man/man3/addpt.3

189 lines
2.9 KiB
Groff
Raw Normal View History

2004-04-10 18:53:55 +00:00
.TH ADDPT 3
.SH NAME
addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip, combinerect, Dx, Dy, Pt, Rect, Rpt \- arithmetic on points and rectangles
.SH SYNOPSIS
.B #include <u.h>
.br
.B #include <libc.h>
.br
.B #include <draw.h>
.PP
.B
Point addpt(Point p, Point q)
.PP
.B
Point subpt(Point p, Point q)
.PP
.B
Point mulpt(Point p, int a)
.PP
.B
Point divpt(Point p, int a)
.PP
.B
Rectangle rectaddpt(Rectangle r, Point p)
.PP
.B
Rectangle rectsubpt(Rectangle r, Point p)
.PP
.B
Rectangle insetrect(Rectangle r, int n)
.PP
.B
Rectangle canonrect(Rectangle r)
.PP
.B
int eqpt(Point p, Point q)
.PP
.B
int eqrect(Rectangle r, Rectangle s)
.PP
.B
int ptinrect(Point p, Rectangle r)
.PP
.B
int rectinrect(Rectangle r, Rectangle s)
.PP
.B
int rectXrect(Rectangle r, Rectangle s)
.PP
.B
int rectclip(Rectangle *rp, Rectangle b)
.PP
.B
void combinerect(Rectangle *rp, Rectangle b)
.PP
.B
int Dx(Rectangle r)
.PP
.B
int Dy(Rectangle r)
.PP
.B
Point Pt(int x, int y)
.PP
.B
Rectangle Rect(int x0, int y0, int x1, int y1)
.PP
.B
Rectangle Rpt(Point p, Point q)
.SH DESCRIPTION
The functions
.IR Pt ,
.I Rect
and
.I Rpt
construct geometrical data types from their components.
.PP
.I Addpt
returns the Point
sum of its arguments:
.BI Pt( p .x+ q .x,
.IB p .y+ q .y) \f1.
.I Subpt
returns the Point
difference of its arguments:
.BI Pt( p .x- q .x,
.IB p .y- q .y) \f1.
.I Mulpt
returns the Point
.BI Pt( p .x* a ,
.IB p .y* a ) \f1.
.I Divpt
returns the Point
.BI Pt( p .x/ a ,
.IB p .y/ a ) \f1.
.PP
.I Rectaddpt
returns the Rectangle
.BI Rect(add( r .min,
.IB p ) \f1,
.BI add( r .max,
.IB p )) \f1;
.I rectsubpt
returns the Rectangle
.BI Rpt(sub( r .min,
.IB p ),
.BI sub( r .max,
.IB p ))\fR.
.PP
.I Insetrect
returns the Rectangle
.BI Rect( r .min.x+ n \f1,
.IB r .min.y+ n \f1,
.IB r .max.x- n \f1,
.IB r .max.y- n ) \f1.
.PP
.I Canonrect
returns a rectangle with the same extent as
.IR r ,
canonicalized so that
.B min.x
.BR max.x ,
and
.B min.y
.BR max.y .
.PP
.I Eqpt
compares its argument Points and returns
0 if unequal,
1 if equal.
.I Eqrect
does the same for its argument Rectangles.
.PP
.I Ptinrect
returns 1 if
.I p
is a point within
.IR r ,
and 0 otherwise.
.PP
.I Rectinrect
returns 1 if all the pixels in
.I r
are also in
.IR s ,
and 0 otherwise.
.PP
.I RectXrect
returns 1 if
.I r
and
.I s
share any point, and 0 otherwise.
.PP
.I Rectclip
clips in place
the Rectangle pointed to by
.I rp
so that it is completely contained within
.IR b .
The return value is 1 if any part of
.RI * rp
is within
.IR b .
Otherwise, the return value is 0 and
.RI * rp
is unchanged.
.PP
.I Combinerect
overwrites
.B *rp
with the smallest rectangle sufficient to cover all the pixels of
.B *rp
and
.BR b .
.PP
The functions
.I Dx
and
.I Dy
give the width (Δx) and height (Δy) of a Rectangle.
They are implemented as macros.
.SH SOURCE
2004-04-19 19:22:56 +00:00
.B /usr/local/plan9/src/libdraw
2004-04-10 18:53:55 +00:00
.SH SEE ALSO
.IR graphics (3)