plan9port/man/man3/mach-map.3

412 lines
8.2 KiB
Groff
Raw Normal View History

.TH MACH-MAP 3
.SH NAME
2004-04-19 05:53:04 +00:00
allocmap, addseg, findseg, addrtoseg,
addrtosegafter, removeseg, freemap,
get1, get2, get4, get8,
put1, put2, put4, put8,
2005-01-03 06:40:20 +00:00
rget, rput, fpformat,
locnone, locaddr, locconst, locreg, locindir,
loccmp, loceval, locfmt, locsimplify,
lget1, lget2, lget4, lget8,
lput1, lput2, lput4, lput8 \- machine-independent
access to address spaces and register sets
.SH SYNOPSIS
.B #include <u.h>
.br
.B #include <libc.h>
.br
.B #include <mach.h>
.PP
2004-04-19 05:53:04 +00:00
.ft B
.ta \w'\fBxxxxxx'u +\w'xxxxxxx'u
.nf
typedef struct Map Map;
typedef struct Seg Seg;
.PP
2004-04-19 05:53:04 +00:00
.ft B
.nf
struct Seg
{
char *name;
char *file;
int fd;
ulong base;
ulong size;
ulong offset;
int (*rw)(Map*, Seg*, ulong, void*, uint, int);
};
.PP
2004-04-19 05:53:04 +00:00
.ft B
.nf
struct Map
{
Seg *seg;
int nseg;
\fI...\fR
};
.PP
2004-04-19 05:53:04 +00:00
.ft B
Map *allocmap(void)
.br
int addseg(Map *map, Seg seg)
.br
int findseg(Map *map, char *name, char *file)
.br
int addrtoseg(Map *map, ulong addr, Seg *seg)
.br
int addrtosegafter(Map *map, ulong addr, Seg *seg)
.br
void removeseg(Map *map, int i)
.br
void freemap(Map *map)
.PP
2004-04-19 05:53:04 +00:00
.ft B
int get1(Map *map, ulong addr, uchar *a, uint n)
.br
int get2(Map *map, ulong addr, u16int *u)
.br
int get4(Map *map, ulong addr, u32int *u)
.br
int get8(Map *map, ulong addr, u64int *u)
.PP
2004-04-19 05:53:04 +00:00
.ft B
int put1(Map *map, ulong addr, uchar *a, uint n)
.br
int put2(Map *map, ulong addr, u16int u)
.br
int put4(Map *map, ulong addr, u32int u)
.br
int put8(Map *map, ulong addr, u64int u)
.PP
2004-04-19 05:53:04 +00:00
.ft B
2005-01-03 06:40:20 +00:00
int rget(Regs *regs, char *reg, ulong *u)
.br
int fpformat(Map *map, char *reg, char *a, uint n, char code);
.PP
2004-04-19 05:53:04 +00:00
.ft B
2005-01-03 06:40:20 +00:00
int rput(Regs *regs, char *name, ulong u)
.PP
2004-04-19 05:53:04 +00:00
.ft B
2005-01-03 06:40:20 +00:00
Loc locnone(void)
.br
Loc locaddr(ulong addr)
.br
Loc locconst(ulong con)
.br
Loc locreg(char *reg)
.br
Loc locindir(char *reg, long offset)
.PP
2004-04-19 05:53:04 +00:00
.ft B
int loccmp(Loc *a, Loc *b)
.br
int loceval(Map *map, Loc loc, ulong *addr)
.br
int locfmt(Fmt *fmt)
.br
2005-01-03 06:40:20 +00:00
int locsimplify(Map *map, Loc *regs, Loc loc, Loc *newloc)
.PP
2004-04-19 05:53:04 +00:00
.ft B
int lget1(Map *map, Loc loc, uchar *a, uint n)
.br
int lget2(Map *map, Loc loc, u16int *u)
.br
int lget4(Map *map, Loc loc, u32int *u)
.br
int lget8(Map *map, Loc loc, u64int *u)
.PP
2004-04-19 05:53:04 +00:00
.ft B
int lput1(Map *map, Loc loc, uchar *a, uint n)
.br
int lput2(Map *map, Loc loc, u16int u)
.br
int lput4(Map *map, Loc loc, u32int u)
.br
int lput8(Map *map, Loc loc, u64int u)
.PP
.SH DESCRIPTION
These functions provide
a processor-independent interface for accessing
executable files, core files, and running processes
via
.IR maps ,
data structures that provides access to an address space
and register set.
The functions described in
.IM mach-file (3)
are typically used to construct these maps.
Related library functions described in
.IM mach-symbol (3)
provide similar access to symbol tables.
.PP
Each
.I map
comprises an optional register set and one or more
.BR segments ,
each associating a non-overlapping range of
memory addresses with a logical section of
an executable file or of a running process's address space.
Other library functions then use a map
and the architecture-specific data structures
to provide a generic interface to the
processor-dependent data.
.PP
Each segment has a name (e.g.,
.B text
or
.BR data )
and may be associated with a particular file.
A segment represents a range of accessible address space.
Segments may be backed an arbitary access function
(if the
.B rw
pointer is non-nil),
or by the contents of an open file
(using the
.B fd
file descriptor).
Each range has a starting address in the space
.RB ( base )
and
an extent
.RB ( size ).
In segments mapped by files,
the range begins at byte
.B offset
in the file.
The
.B rw
function is most commonly used to provide
access to executing processes via
.IM ptrace (2)
and to zeroed segments.
.PP
.I Allocmap
creates an empty map;
.IR freemap
frees a map.
.PP
.I Addseg
adds the given segment to the map, resizing the map's
.I seg
array if necessary.
A negative return value indicates an allocation error.
.PP
.I Findseg
returns the index of the segment with the given name (and, if
.I file
is non-nil, the given file),
or \-1 if no such segment is found.
.PP
.I Addrtoseg
returns the index of the segment containing
for the given address, or \-1 if that address is not mapped.
Segments may have overlapping address ranges:
.I addseg
appends segments to the end of the
.I seg
array in the map, and
.I addrtoseg
searches the map backwards from the end,
so the most recently mapped segment wins.
.PP
.I Addrtosegafter
returns the index of the segment containing the lowest mapped
address greater than
.IR addr .
.PP
.I Removeseg
removes the segment at the given index.
.PP
.IR Get1 ,
.IR get2 ,
.IR get4 ,
and
.I get8
retrieve the data stored at address
.I addr
in the address space associated
with
.IR map .
.I Get1
retrieves
.I n
bytes of data beginning at
.I addr
into
.IR buf .
.IR Get2 ,
.I get4
and
.I get8
retrieve 16-bit, 32-bit and 64-bit values respectively,
into the location pointed to by
.IR u .
The value is byte-swapped if the source
byte order differs from that of the current architecture.
This implies that the value returned by
.IR get2 ,
.IR get4 ,
and
.I get8
may not be the same as the byte sequences
returned by
.I get1
when
.I n
is two, four or eight; the former may be byte-swapped, the
latter reflects the byte order of the target architecture.
These functions return the number
of bytes read or a \-1 when there is an error.
.PP
.IR Put1 ,
.IR put2 ,
.IR put4 ,
and
.I put8
write to
the address space associated with
.IR map .
The address is translated using the
map parameters and multi-byte quantities are
byte-swapped, if necessary, before they are written.
.I Put1
transfers
.I n
bytes stored at
.IR buf ;
.IR put2 ,
.IR put4 ,
and
.I put8
write the 16-bit, 32-bit or 64-bit quantity contained in
.IR val ,
respectively. The number of bytes transferred is returned.
A \-1 return value indicates an error.
.PP
When representing core files or running programs,
maps also provide access to the register set.
2005-01-03 06:40:20 +00:00
.IR Rget
and
.IR rput
read or write the register
named by
.IR reg .
2005-01-03 06:40:20 +00:00
If the register is smaller than a
.BR ulong ,
the high bits are ignored.
.PP
.I Fpformat
converts the contents of a floating-point register to a string.
.I Buf
is the address of a buffer of
.I n
bytes to hold the resulting string.
.I Code
must be either
.L F
or
.LR f ,
selecting double or single precision, respectively.
If
.I code
is
.LR F ,
the contents of the specified register and the
following register are interpreted as a double-precision
floating-point number;
this is meaningful only for architectures that implement
double-precision floats by combining adjacent single-precision
registers.
.PP
A
.I location
represents a place in an executing image capable of
storing a value.
Note that locations are typically passed by value rather than by reference.
.PP
.I Locnone
returns an unreadable, unwritable location.
.I Locaddr
returns a location representing the memory address
.IR addr .
.I Locreg
returns a location representing the register
.IR reg .
.I Locindir
returns an location representing the memory address
at
.I offset
added to the value of
.IR reg .
.I Locconst
returns an imaginary unwritable location holding the constant
.IR con ;
such locations are useful for passing specific constants to
functions expect locations, such as
.I unwind
(see
.IM mach-stack (3) ).
.PP
.I Loccmp
compares two locations, returning negative, zero, or positive
values if
.B *a
is less than, equal to, or greater than
.BR *b ,
respectively.
Register locations are ordered before memory addresses,
which are ordered before indirections.
.PP
.I Locfmt
is a
.IM print (3) -verb
that formats a
.B Loc
structure
.RI ( not
a pointer to one).
.PP
Indirection locations are needed in some contexts (e.g., when
using
.I findlsym
(see
.IM mach-symbol (3) )),
but bothersome in most.
.I Locsimplify
rewrites indirections as absolute memory addresses, by evaluating
the register using the given map and adding the offset.
.PP
The functions
.IR lget1 ,
.IR lget2 ,
.IR lget4 ,
.IR lget8 ,
.IR lput1 ,
.IR lput2 ,
.IR lput4 ,
and
.I lput8
read and write the given locations, using the
.IR get ,
.IR put ,
.IR rget ,
and
.I rput
function families as necessary.
.SH SOURCE
2005-01-11 17:37:33 +00:00
.B \*9/src/libmach
.SH "SEE ALSO"
.IM mach (3) ,
.IM mach-file (3)
.SH DIAGNOSTICS
These routines set
.IR errstr .
2005-01-03 06:40:20 +00:00
.SH BUGS
This man page needs to describe
.B Regs
and
.B Regdesc
2005-02-11 19:43:43 +00:00
and
.I coreregs.