mirror of
https://github.com/9fans/plan9port.git
synced 2025-01-12 11:10:07 +00:00
d32deab17b
Suggested by G. Brandon Robinson.
188 lines
2.9 KiB
Groff
188 lines
2.9 KiB
Groff
.TH ADDPT 3
|
|
.SH NAME
|
|
addpt, subpt, mulpt, divpt, rectaddpt, rectsubpt, insetrect, canonrect, eqpt, eqrect, ptinrect, rectinrect, rectXrect, rectclip, combinerect, Dx, Dy, Pt, Rect, Rpt \- arithmetic on points and rectangles
|
|
.SH SYNOPSIS
|
|
.B #include <u.h>
|
|
.br
|
|
.B #include <libc.h>
|
|
.br
|
|
.B #include <draw.h>
|
|
.PP
|
|
.B
|
|
Point addpt(Point p, Point q)
|
|
.PP
|
|
.B
|
|
Point subpt(Point p, Point q)
|
|
.PP
|
|
.B
|
|
Point mulpt(Point p, int a)
|
|
.PP
|
|
.B
|
|
Point divpt(Point p, int a)
|
|
.PP
|
|
.B
|
|
Rectangle rectaddpt(Rectangle r, Point p)
|
|
.PP
|
|
.B
|
|
Rectangle rectsubpt(Rectangle r, Point p)
|
|
.PP
|
|
.B
|
|
Rectangle insetrect(Rectangle r, int n)
|
|
.PP
|
|
.B
|
|
Rectangle canonrect(Rectangle r)
|
|
.PP
|
|
.B
|
|
int eqpt(Point p, Point q)
|
|
.PP
|
|
.B
|
|
int eqrect(Rectangle r, Rectangle s)
|
|
.PP
|
|
.B
|
|
int ptinrect(Point p, Rectangle r)
|
|
.PP
|
|
.B
|
|
int rectinrect(Rectangle r, Rectangle s)
|
|
.PP
|
|
.B
|
|
int rectXrect(Rectangle r, Rectangle s)
|
|
.PP
|
|
.B
|
|
int rectclip(Rectangle *rp, Rectangle b)
|
|
.PP
|
|
.B
|
|
void combinerect(Rectangle *rp, Rectangle b)
|
|
.PP
|
|
.B
|
|
int Dx(Rectangle r)
|
|
.PP
|
|
.B
|
|
int Dy(Rectangle r)
|
|
.PP
|
|
.B
|
|
Point Pt(int x, int y)
|
|
.PP
|
|
.B
|
|
Rectangle Rect(int x0, int y0, int x1, int y1)
|
|
.PP
|
|
.B
|
|
Rectangle Rpt(Point p, Point q)
|
|
.SH DESCRIPTION
|
|
The functions
|
|
.IR Pt ,
|
|
.I Rect
|
|
and
|
|
.I Rpt
|
|
construct geometrical data types from their components.
|
|
.PP
|
|
.I Addpt
|
|
returns the Point
|
|
sum of its arguments:
|
|
.BI Pt( p .x+ q .x,
|
|
.IB p .y+ q .y) \f1.
|
|
.I Subpt
|
|
returns the Point
|
|
difference of its arguments:
|
|
.BI Pt( p .x- q .x,
|
|
.IB p .y- q .y) \f1.
|
|
.I Mulpt
|
|
returns the Point
|
|
.BI Pt( p .x* a ,
|
|
.IB p .y* a ) \f1.
|
|
.I Divpt
|
|
returns the Point
|
|
.BI Pt( p .x/ a ,
|
|
.IB p .y/ a ) \f1.
|
|
.PP
|
|
.I Rectaddpt
|
|
returns the Rectangle
|
|
.BI Rect(add( r .min,
|
|
.IB p ) \f1,
|
|
.BI add( r .max,
|
|
.IB p )) \f1;
|
|
.I rectsubpt
|
|
returns the Rectangle
|
|
.BI Rpt(sub( r .min,
|
|
.IB p ),
|
|
.BI sub( r .max,
|
|
.IB p ))\fR.
|
|
.PP
|
|
.I Insetrect
|
|
returns the Rectangle
|
|
.BI Rect( r .min.x+ n \f1,
|
|
.IB r .min.y+ n \f1,
|
|
.IB r .max.x- n \f1,
|
|
.IB r .max.y- n ) \f1.
|
|
.PP
|
|
.I Canonrect
|
|
returns a rectangle with the same extent as
|
|
.IR r ,
|
|
canonicalized so that
|
|
.B min.x
|
|
≤
|
|
.BR max.x ,
|
|
and
|
|
.B min.y
|
|
≤
|
|
.BR max.y .
|
|
.PP
|
|
.I Eqpt
|
|
compares its argument Points and returns
|
|
0 if unequal,
|
|
1 if equal.
|
|
.I Eqrect
|
|
does the same for its argument Rectangles.
|
|
.PP
|
|
.I Ptinrect
|
|
returns 1 if
|
|
.I p
|
|
is a point within
|
|
.IR r ,
|
|
and 0 otherwise.
|
|
.PP
|
|
.I Rectinrect
|
|
returns 1 if all the pixels in
|
|
.I r
|
|
are also in
|
|
.IR s ,
|
|
and 0 otherwise.
|
|
.PP
|
|
.I RectXrect
|
|
returns 1 if
|
|
.I r
|
|
and
|
|
.I s
|
|
share any point, and 0 otherwise.
|
|
.PP
|
|
.I Rectclip
|
|
clips in place
|
|
the Rectangle pointed to by
|
|
.I rp
|
|
so that it is completely contained within
|
|
.IR b .
|
|
The return value is 1 if any part of
|
|
.RI * rp
|
|
is within
|
|
.IR b .
|
|
Otherwise, the return value is 0 and
|
|
.RI * rp
|
|
is unchanged.
|
|
.PP
|
|
.I Combinerect
|
|
overwrites
|
|
.B *rp
|
|
with the smallest rectangle sufficient to cover all the pixels of
|
|
.B *rp
|
|
and
|
|
.BR b .
|
|
.PP
|
|
The functions
|
|
.I Dx
|
|
and
|
|
.I Dy
|
|
give the width (Δx) and height (Δy) of a Rectangle.
|
|
They are implemented as macros.
|
|
.SH SOURCE
|
|
.B \*9/src/libdraw
|
|
.SH SEE ALSO
|
|
.MR graphics (3)
|