mirror of
https://github.com/9fans/plan9port.git
synced 2025-01-12 11:10:07 +00:00
d32deab17b
Suggested by G. Brandon Robinson.
350 lines
5.9 KiB
Groff
350 lines
5.9 KiB
Groff
.TH MATRIX 3
|
|
.SH NAME
|
|
ident, matmul, matmulr, determinant, adjoint, invertmat, xformpoint, xformpointd, xformplane, pushmat, popmat, rot, qrot, scale, move, xform, ixform, persp, look, viewport \- Geometric transformations
|
|
.SH SYNOPSIS
|
|
.PP
|
|
.B
|
|
#include <draw.h>
|
|
.PP
|
|
.B
|
|
#include <geometry.h>
|
|
.PP
|
|
.B
|
|
void ident(Matrix m)
|
|
.PP
|
|
.B
|
|
void matmul(Matrix a, Matrix b)
|
|
.PP
|
|
.B
|
|
void matmulr(Matrix a, Matrix b)
|
|
.PP
|
|
.B
|
|
double determinant(Matrix m)
|
|
.PP
|
|
.B
|
|
void adjoint(Matrix m, Matrix madj)
|
|
.PP
|
|
.B
|
|
double invertmat(Matrix m, Matrix inv)
|
|
.PP
|
|
.B
|
|
Point3 xformpoint(Point3 p, Space *to, Space *from)
|
|
.PP
|
|
.B
|
|
Point3 xformpointd(Point3 p, Space *to, Space *from)
|
|
.PP
|
|
.B
|
|
Point3 xformplane(Point3 p, Space *to, Space *from)
|
|
.PP
|
|
.B
|
|
Space *pushmat(Space *t)
|
|
.PP
|
|
.B
|
|
Space *popmat(Space *t)
|
|
.PP
|
|
.B
|
|
void rot(Space *t, double theta, int axis)
|
|
.PP
|
|
.B
|
|
void qrot(Space *t, Quaternion q)
|
|
.PP
|
|
.B
|
|
void scale(Space *t, double x, double y, double z)
|
|
.PP
|
|
.B
|
|
void move(Space *t, double x, double y, double z)
|
|
.PP
|
|
.B
|
|
void xform(Space *t, Matrix m)
|
|
.PP
|
|
.B
|
|
void ixform(Space *t, Matrix m, Matrix inv)
|
|
.PP
|
|
.B
|
|
int persp(Space *t, double fov, double n, double f)
|
|
.PP
|
|
.B
|
|
void look(Space *t, Point3 eye, Point3 look, Point3 up)
|
|
.PP
|
|
.B
|
|
void viewport(Space *t, Rectangle r, double aspect)
|
|
.SH DESCRIPTION
|
|
These routines manipulate 3-space affine and projective transformations,
|
|
represented as 4\(mu4 matrices, thus:
|
|
.IP
|
|
.EX
|
|
.ta 6n
|
|
typedef double Matrix[4][4];
|
|
.EE
|
|
.PP
|
|
.I Ident
|
|
stores an identity matrix in its argument.
|
|
.I Matmul
|
|
stores
|
|
.I a\(mub
|
|
in
|
|
.IR a .
|
|
.I Matmulr
|
|
stores
|
|
.I b\(mua
|
|
in
|
|
.IR b .
|
|
.I Determinant
|
|
returns the determinant of matrix
|
|
.IR m .
|
|
.I Adjoint
|
|
stores the adjoint (matrix of cofactors) of
|
|
.I m
|
|
in
|
|
.IR madj .
|
|
.I Invertmat
|
|
stores the inverse of matrix
|
|
.I m
|
|
in
|
|
.IR minv ,
|
|
returning
|
|
.IR m 's
|
|
determinant.
|
|
Should
|
|
.I m
|
|
be singular (determinant zero),
|
|
.I invertmat
|
|
stores its
|
|
adjoint in
|
|
.IR minv .
|
|
.PP
|
|
The rest of the routines described here
|
|
manipulate
|
|
.I Spaces
|
|
and transform
|
|
.IR Point3s .
|
|
A
|
|
.I Point3
|
|
is a point in three-space, represented by its
|
|
homogeneous coordinates:
|
|
.IP
|
|
.EX
|
|
typedef struct Point3 Point3;
|
|
struct Point3{
|
|
double x, y, z, w;
|
|
};
|
|
.EE
|
|
.PP
|
|
The homogeneous coordinates
|
|
.RI ( x ,
|
|
.IR y ,
|
|
.IR z ,
|
|
.IR w )
|
|
represent the Euclidean point
|
|
.RI ( x / w ,
|
|
.IR y / w ,
|
|
.IR z / w )
|
|
if
|
|
.IR w ≠0,
|
|
and a ``point at infinity'' if
|
|
.IR w =0.
|
|
.PP
|
|
A
|
|
.I Space
|
|
is just a data structure describing a coordinate system:
|
|
.IP
|
|
.EX
|
|
typedef struct Space Space;
|
|
struct Space{
|
|
Matrix t;
|
|
Matrix tinv;
|
|
Space *next;
|
|
};
|
|
.EE
|
|
.PP
|
|
It contains a pair of transformation matrices and a pointer
|
|
to the
|
|
.IR Space 's
|
|
parent. The matrices transform points to and from the ``root
|
|
coordinate system,'' which is represented by a null
|
|
.I Space
|
|
pointer.
|
|
.PP
|
|
.I Pushmat
|
|
creates a new
|
|
.IR Space .
|
|
Its argument is a pointer to the parent space. Its result
|
|
is a newly allocated copy of the parent, but with its
|
|
.B next
|
|
pointer pointing at the parent.
|
|
.I Popmat
|
|
discards the
|
|
.B Space
|
|
that is its argument, returning a pointer to the stack.
|
|
Nominally, these two functions define a stack of transformations,
|
|
but
|
|
.B pushmat
|
|
can be called multiple times
|
|
on the same
|
|
.B Space
|
|
multiple times, creating a transformation tree.
|
|
.PP
|
|
.I Xformpoint
|
|
and
|
|
.I Xformpointd
|
|
both transform points from the
|
|
.B Space
|
|
pointed to by
|
|
.I from
|
|
to the space pointed to by
|
|
.IR to .
|
|
Either pointer may be null, indicating the root coordinate system.
|
|
The difference between the two functions is that
|
|
.B xformpointd
|
|
divides
|
|
.IR x ,
|
|
.IR y ,
|
|
.IR z ,
|
|
and
|
|
.I w
|
|
by
|
|
.IR w ,
|
|
if
|
|
.IR w ≠0,
|
|
making
|
|
.RI ( x ,
|
|
.IR y ,
|
|
.IR z )
|
|
the Euclidean coordinates of the point.
|
|
.PP
|
|
.I Xformplane
|
|
transforms planes or normal vectors. A plane is specified by the
|
|
coefficients
|
|
.RI ( a ,
|
|
.IR b ,
|
|
.IR c ,
|
|
.IR d )
|
|
of its implicit equation
|
|
.IR ax+by+cz+d =0.
|
|
Since this representation is dual to the homogeneous representation of points,
|
|
.B libgeometry
|
|
represents planes by
|
|
.B Point3
|
|
structures, with
|
|
.RI ( a ,
|
|
.IR b ,
|
|
.IR c ,
|
|
.IR d )
|
|
stored in
|
|
.RI ( x ,
|
|
.IR y ,
|
|
.IR z ,
|
|
.IR w ).
|
|
.PP
|
|
The remaining functions transform the coordinate system represented
|
|
by a
|
|
.BR Space .
|
|
Their
|
|
.B Space *
|
|
argument must be non-null \(em you can't modify the root
|
|
.BR Space .
|
|
.I Rot
|
|
rotates by angle
|
|
.I theta
|
|
(in radians) about the given
|
|
.IR axis ,
|
|
which must be one of
|
|
.BR XAXIS ,
|
|
.B YAXIS
|
|
or
|
|
.BR ZAXIS .
|
|
.I Qrot
|
|
transforms by a rotation about an arbitrary axis, specified by
|
|
.B Quaternion
|
|
.IR q .
|
|
.PP
|
|
.I Scale
|
|
scales the coordinate system by the given scale factors in the directions of the three axes.
|
|
.IB Move
|
|
translates by the given displacement in the three axial directions.
|
|
.PP
|
|
.I Xform
|
|
transforms the coordinate system by the given
|
|
.BR Matrix .
|
|
If the matrix's inverse is known
|
|
.I a
|
|
.IR priori ,
|
|
calling
|
|
.I ixform
|
|
will save the work of recomputing it.
|
|
.PP
|
|
.I Persp
|
|
does a perspective transformation.
|
|
The transformation maps the frustum with apex at the origin,
|
|
central axis down the positive
|
|
.I y
|
|
axis, and apex angle
|
|
.I fov
|
|
and clipping planes
|
|
.IR y = n
|
|
and
|
|
.IR y = f
|
|
into the double-unit cube.
|
|
The plane
|
|
.IR y = n
|
|
maps to
|
|
.IR y '=-1,
|
|
.IR y = f
|
|
maps to
|
|
.IR y '=1.
|
|
.PP
|
|
.I Look
|
|
does a view-pointing transformation. The
|
|
.B eye
|
|
point is moved to the origin.
|
|
The line through the
|
|
.I eye
|
|
and
|
|
.I look
|
|
points is aligned with the y axis,
|
|
and the plane containing the
|
|
.BR eye ,
|
|
.B look
|
|
and
|
|
.B up
|
|
points is rotated into the
|
|
.IR x - y
|
|
plane.
|
|
.PP
|
|
.I Viewport
|
|
maps the unit-cube window into the given screen viewport.
|
|
The viewport rectangle
|
|
.I r
|
|
has
|
|
.IB r .min
|
|
at the top left-hand corner, and
|
|
.IB r .max
|
|
just outside the lower right-hand corner.
|
|
Argument
|
|
.I aspect
|
|
is the aspect ratio
|
|
.RI ( dx / dy )
|
|
of the viewport's pixels (not of the whole viewport).
|
|
The whole window is transformed to fit centered inside the viewport with equal
|
|
slop on either top and bottom or left and right, depending on the viewport's
|
|
aspect ratio.
|
|
The window is viewed down the
|
|
.I y
|
|
axis, with
|
|
.I x
|
|
to the left and
|
|
.I z
|
|
up. The viewport
|
|
has
|
|
.I x
|
|
increasing to the right and
|
|
.I y
|
|
increasing down. The window's
|
|
.I y
|
|
coordinates are mapped, unchanged, into the viewport's
|
|
.I z
|
|
coordinates.
|
|
.SH SOURCE
|
|
.B \*9/src/libgeometry/matrix.c
|
|
.SH "SEE ALSO
|
|
.MR arith3 (3)
|