mirror of
https://github.com/9fans/plan9port.git
synced 2025-01-12 11:10:07 +00:00
242 lines
5.6 KiB
C
242 lines
5.6 KiB
C
/*
|
|
* Quaternion arithmetic:
|
|
* qadd(q, r) returns q+r
|
|
* qsub(q, r) returns q-r
|
|
* qneg(q) returns -q
|
|
* qmul(q, r) returns q*r
|
|
* qdiv(q, r) returns q/r, can divide check.
|
|
* qinv(q) returns 1/q, can divide check.
|
|
* double qlen(p) returns modulus of p
|
|
* qunit(q) returns a unit quaternion parallel to q
|
|
* The following only work on unit quaternions and rotation matrices:
|
|
* slerp(q, r, a) returns q*(r*q^-1)^a
|
|
* qmid(q, r) slerp(q, r, .5)
|
|
* qsqrt(q) qmid(q, (Quaternion){1,0,0,0})
|
|
* qtom(m, q) converts a unit quaternion q into a rotation matrix m
|
|
* mtoq(m) returns a quaternion equivalent to a rotation matrix m
|
|
*/
|
|
#include <u.h>
|
|
#include <libc.h>
|
|
#include <draw.h>
|
|
#include <geometry.h>
|
|
void qtom(Matrix m, Quaternion q){
|
|
#ifndef new
|
|
m[0][0]=1-2*(q.j*q.j+q.k*q.k);
|
|
m[0][1]=2*(q.i*q.j+q.r*q.k);
|
|
m[0][2]=2*(q.i*q.k-q.r*q.j);
|
|
m[0][3]=0;
|
|
m[1][0]=2*(q.i*q.j-q.r*q.k);
|
|
m[1][1]=1-2*(q.i*q.i+q.k*q.k);
|
|
m[1][2]=2*(q.j*q.k+q.r*q.i);
|
|
m[1][3]=0;
|
|
m[2][0]=2*(q.i*q.k+q.r*q.j);
|
|
m[2][1]=2*(q.j*q.k-q.r*q.i);
|
|
m[2][2]=1-2*(q.i*q.i+q.j*q.j);
|
|
m[2][3]=0;
|
|
m[3][0]=0;
|
|
m[3][1]=0;
|
|
m[3][2]=0;
|
|
m[3][3]=1;
|
|
#else
|
|
/*
|
|
* Transcribed from Ken Shoemake's new code -- not known to work
|
|
*/
|
|
double Nq = q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k;
|
|
double s = (Nq > 0.0) ? (2.0 / Nq) : 0.0;
|
|
double xs = q.i*s, ys = q.j*s, zs = q.k*s;
|
|
double wx = q.r*xs, wy = q.r*ys, wz = q.r*zs;
|
|
double xx = q.i*xs, xy = q.i*ys, xz = q.i*zs;
|
|
double yy = q.j*ys, yz = q.j*zs, zz = q.k*zs;
|
|
m[0][0] = 1.0 - (yy + zz); m[1][0] = xy + wz; m[2][0] = xz - wy;
|
|
m[0][1] = xy - wz; m[1][1] = 1.0 - (xx + zz); m[2][1] = yz + wx;
|
|
m[0][2] = xz + wy; m[1][2] = yz - wx; m[2][2] = 1.0 - (xx + yy);
|
|
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0;
|
|
m[3][3] = 1.0;
|
|
#endif
|
|
}
|
|
Quaternion mtoq(Matrix mat){
|
|
#ifndef new
|
|
#define EPS 1.387778780781445675529539585113525e-17 /* 2^-56 */
|
|
double t;
|
|
Quaternion q;
|
|
q.r=0.;
|
|
q.i=0.;
|
|
q.j=0.;
|
|
q.k=1.;
|
|
if((t=.25*(1+mat[0][0]+mat[1][1]+mat[2][2]))>EPS){
|
|
q.r=sqrt(t);
|
|
t=4*q.r;
|
|
q.i=(mat[1][2]-mat[2][1])/t;
|
|
q.j=(mat[2][0]-mat[0][2])/t;
|
|
q.k=(mat[0][1]-mat[1][0])/t;
|
|
}
|
|
else if((t=-.5*(mat[1][1]+mat[2][2]))>EPS){
|
|
q.i=sqrt(t);
|
|
t=2*q.i;
|
|
q.j=mat[0][1]/t;
|
|
q.k=mat[0][2]/t;
|
|
}
|
|
else if((t=.5*(1-mat[2][2]))>EPS){
|
|
q.j=sqrt(t);
|
|
q.k=mat[1][2]/(2*q.j);
|
|
}
|
|
return q;
|
|
#else
|
|
/*
|
|
* Transcribed from Ken Shoemake's new code -- not known to work
|
|
*/
|
|
/* This algorithm avoids near-zero divides by looking for a large
|
|
* component -- first r, then i, j, or k. When the trace is greater than zero,
|
|
* |r| is greater than 1/2, which is as small as a largest component can be.
|
|
* Otherwise, the largest diagonal entry corresponds to the largest of |i|,
|
|
* |j|, or |k|, one of which must be larger than |r|, and at least 1/2.
|
|
*/
|
|
Quaternion qu;
|
|
double tr, s;
|
|
|
|
tr = mat[0][0] + mat[1][1] + mat[2][2];
|
|
if (tr >= 0.0) {
|
|
s = sqrt(tr + mat[3][3]);
|
|
qu.r = s*0.5;
|
|
s = 0.5 / s;
|
|
qu.i = (mat[2][1] - mat[1][2]) * s;
|
|
qu.j = (mat[0][2] - mat[2][0]) * s;
|
|
qu.k = (mat[1][0] - mat[0][1]) * s;
|
|
}
|
|
else {
|
|
int i = 0;
|
|
if (mat[1][1] > mat[0][0]) i = 1;
|
|
if (mat[2][2] > mat[i][i]) i = 2;
|
|
switch(i){
|
|
case 0:
|
|
s = sqrt( (mat[0][0] - (mat[1][1]+mat[2][2])) + mat[3][3] );
|
|
qu.i = s*0.5;
|
|
s = 0.5 / s;
|
|
qu.j = (mat[0][1] + mat[1][0]) * s;
|
|
qu.k = (mat[2][0] + mat[0][2]) * s;
|
|
qu.r = (mat[2][1] - mat[1][2]) * s;
|
|
break;
|
|
case 1:
|
|
s = sqrt( (mat[1][1] - (mat[2][2]+mat[0][0])) + mat[3][3] );
|
|
qu.j = s*0.5;
|
|
s = 0.5 / s;
|
|
qu.k = (mat[1][2] + mat[2][1]) * s;
|
|
qu.i = (mat[0][1] + mat[1][0]) * s;
|
|
qu.r = (mat[0][2] - mat[2][0]) * s;
|
|
break;
|
|
case 2:
|
|
s = sqrt( (mat[2][2] - (mat[0][0]+mat[1][1])) + mat[3][3] );
|
|
qu.k = s*0.5;
|
|
s = 0.5 / s;
|
|
qu.i = (mat[2][0] + mat[0][2]) * s;
|
|
qu.j = (mat[1][2] + mat[2][1]) * s;
|
|
qu.r = (mat[1][0] - mat[0][1]) * s;
|
|
break;
|
|
}
|
|
}
|
|
if (mat[3][3] != 1.0){
|
|
s=1/sqrt(mat[3][3]);
|
|
qu.r*=s;
|
|
qu.i*=s;
|
|
qu.j*=s;
|
|
qu.k*=s;
|
|
}
|
|
return (qu);
|
|
#endif
|
|
}
|
|
Quaternion qadd(Quaternion q, Quaternion r){
|
|
q.r+=r.r;
|
|
q.i+=r.i;
|
|
q.j+=r.j;
|
|
q.k+=r.k;
|
|
return q;
|
|
}
|
|
Quaternion qsub(Quaternion q, Quaternion r){
|
|
q.r-=r.r;
|
|
q.i-=r.i;
|
|
q.j-=r.j;
|
|
q.k-=r.k;
|
|
return q;
|
|
}
|
|
Quaternion qneg(Quaternion q){
|
|
q.r=-q.r;
|
|
q.i=-q.i;
|
|
q.j=-q.j;
|
|
q.k=-q.k;
|
|
return q;
|
|
}
|
|
Quaternion qmul(Quaternion q, Quaternion r){
|
|
Quaternion s;
|
|
s.r=q.r*r.r-q.i*r.i-q.j*r.j-q.k*r.k;
|
|
s.i=q.r*r.i+r.r*q.i+q.j*r.k-q.k*r.j;
|
|
s.j=q.r*r.j+r.r*q.j+q.k*r.i-q.i*r.k;
|
|
s.k=q.r*r.k+r.r*q.k+q.i*r.j-q.j*r.i;
|
|
return s;
|
|
}
|
|
Quaternion qdiv(Quaternion q, Quaternion r){
|
|
return qmul(q, qinv(r));
|
|
}
|
|
Quaternion qunit(Quaternion q){
|
|
double l=qlen(q);
|
|
q.r/=l;
|
|
q.i/=l;
|
|
q.j/=l;
|
|
q.k/=l;
|
|
return q;
|
|
}
|
|
/*
|
|
* Bug?: takes no action on divide check
|
|
*/
|
|
Quaternion qinv(Quaternion q){
|
|
double l=q.r*q.r+q.i*q.i+q.j*q.j+q.k*q.k;
|
|
q.r/=l;
|
|
q.i=-q.i/l;
|
|
q.j=-q.j/l;
|
|
q.k=-q.k/l;
|
|
return q;
|
|
}
|
|
double qlen(Quaternion p){
|
|
return sqrt(p.r*p.r+p.i*p.i+p.j*p.j+p.k*p.k);
|
|
}
|
|
Quaternion slerp(Quaternion q, Quaternion r, double a){
|
|
double u, v, ang, s;
|
|
double dot=q.r*r.r+q.i*r.i+q.j*r.j+q.k*r.k;
|
|
ang=dot<-1?PI:dot>1?0:acos(dot); /* acos gives NaN for dot slightly out of range */
|
|
s=sin(ang);
|
|
if(s==0) return ang<PI/2?q:r;
|
|
u=sin((1-a)*ang)/s;
|
|
v=sin(a*ang)/s;
|
|
q.r=u*q.r+v*r.r;
|
|
q.i=u*q.i+v*r.i;
|
|
q.j=u*q.j+v*r.j;
|
|
q.k=u*q.k+v*r.k;
|
|
return q;
|
|
}
|
|
/*
|
|
* Only works if qlen(q)==qlen(r)==1
|
|
*/
|
|
Quaternion qmid(Quaternion q, Quaternion r){
|
|
double l;
|
|
q=qadd(q, r);
|
|
l=qlen(q);
|
|
if(l<1e-12){
|
|
q.r=r.i;
|
|
q.i=-r.r;
|
|
q.j=r.k;
|
|
q.k=-r.j;
|
|
}
|
|
else{
|
|
q.r/=l;
|
|
q.i/=l;
|
|
q.j/=l;
|
|
q.k/=l;
|
|
}
|
|
return q;
|
|
}
|
|
/*
|
|
* Only works if qlen(q)==1
|
|
*/
|
|
static Quaternion qident={1,0,0,0};
|
|
Quaternion qsqrt(Quaternion q){
|
|
return qmid(q, qident);
|
|
}
|