mirror of
https://github.com/9fans/plan9port.git
synced 2025-01-15 11:20:03 +00:00
247 lines
4.9 KiB
Groff
247 lines
4.9 KiB
Groff
.TH LOCK 3
|
|
.SH NAME
|
|
lock, canlock, unlock,
|
|
qlock, canqlock, qunlock,
|
|
rlock, canrlock, runlock,
|
|
wlock, canwlock, wunlock,
|
|
rsleep, rwakeup, rwakeupall
|
|
incref, decref
|
|
\- spin locks, queueing rendezvous locks, reader-writer locks, rendezvous points, and reference counts
|
|
.SH SYNOPSIS
|
|
.ft L
|
|
.nf
|
|
#include <u.h>
|
|
#include <libc.h>
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
void lock(Lock *l)
|
|
int canlock(Lock *l)
|
|
void unlock(Lock *l)
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
void qlock(QLock *l)
|
|
int canqlock(QLock *l)
|
|
void qunlock(QLock *l)
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
void rlock(RWLock *l)
|
|
int canrlock(RWLock *l)
|
|
void runlock(RWLock *l)
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
void wlock(RWLock *l)
|
|
int canwlock(RWLock *l)
|
|
void wunlock(RWLock *l)
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
typedef struct Rendez {
|
|
QLock *l;
|
|
\fI...\fP
|
|
} Rendez;
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
void rsleep(Rendez *r)
|
|
int rwakeup(Rendez *r)
|
|
int rwakeupall(Rendez *r)
|
|
.PP
|
|
.ft L
|
|
#include <thread.h>
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
typedef struct Ref {
|
|
long ref;
|
|
} Ref;
|
|
.PP
|
|
.ft L
|
|
.nf
|
|
void incref(Ref*)
|
|
long decref(Ref*)
|
|
.fi
|
|
.SH DESCRIPTION
|
|
These routines are used to synchronize processes sharing memory.
|
|
.PP
|
|
.B Locks
|
|
are spin locks,
|
|
.B QLocks
|
|
and
|
|
.B RWLocks
|
|
are different types of queueing locks,
|
|
and
|
|
.B Rendezes
|
|
are rendezvous points.
|
|
.PP
|
|
Locks and rendezvous points have trivial implementations in programs
|
|
not using the thread library
|
|
(see
|
|
.IR thread (3)),
|
|
since such programs have no concurrency.
|
|
.PP
|
|
Used carelessly, spin locks can be expensive and can easily generate deadlocks.
|
|
Their use is discouraged, especially in programs that use the
|
|
thread library because they prevent context switches between threads.
|
|
.PP
|
|
.I Lock
|
|
blocks until the lock has been obtained.
|
|
.I Canlock
|
|
is non-blocking.
|
|
It tries to obtain a lock and returns a non-zero value if it
|
|
was successful, 0 otherwise.
|
|
.I Unlock
|
|
releases a lock.
|
|
.PP
|
|
.B QLocks
|
|
have the same interface but are not spin locks; instead if the lock is taken
|
|
.I qlock
|
|
will suspend execution of the calling thread until it is released.
|
|
.PP
|
|
Although
|
|
.B Locks
|
|
are the more primitive lock, they have limitations; for example,
|
|
they cannot synchronize between tasks in the same
|
|
.IR proc .
|
|
Use
|
|
.B QLocks
|
|
instead.
|
|
.PP
|
|
.B RWLocks
|
|
manage access to a data structure that has distinct readers and writers.
|
|
.I Rlock
|
|
grants read access;
|
|
.I runlock
|
|
releases it.
|
|
.I Wlock
|
|
grants write access;
|
|
.I wunlock
|
|
releases it.
|
|
.I Canrlock
|
|
and
|
|
.I canwlock
|
|
are the non-blocking versions.
|
|
There may be any number of simultaneous readers,
|
|
but only one writer.
|
|
Moreover,
|
|
if write access is granted no one may have
|
|
read access until write access is released.
|
|
.PP
|
|
All types of lock should be initialized to all zeros before use; this
|
|
puts them in the unlocked state.
|
|
.PP
|
|
.B Rendezes
|
|
are rendezvous points. Each
|
|
.B Rendez
|
|
.I r
|
|
is protected by a
|
|
.B QLock
|
|
.IB r -> l \fR,
|
|
which must be held by the callers of
|
|
.IR rsleep ,
|
|
.IR rwakeup ,
|
|
and
|
|
.IR rwakeupall .
|
|
.I Rsleep
|
|
atomically releases
|
|
.IB r -> l
|
|
and suspends execution of the calling task.
|
|
After resuming execution,
|
|
.I rsleep
|
|
will reacquire
|
|
.IB r -> l
|
|
before returning.
|
|
If any processes are sleeping on
|
|
.IR r ,
|
|
.I rwakeup
|
|
wakes one of them.
|
|
it returns 1 if a process was awakened, 0 if not.
|
|
.I Rwakeupall
|
|
wakes all processes sleeping on
|
|
.IR r ,
|
|
returning the number of processes awakened.
|
|
.I Rwakeup
|
|
and
|
|
.I rwakeupall
|
|
do not release
|
|
.IB r -> l
|
|
and do not suspend execution of the current task.
|
|
.PP
|
|
Before use,
|
|
.B Rendezes
|
|
should be initialized to all zeros except for
|
|
.IB r -> l
|
|
pointer, which should point at the
|
|
.B QLock
|
|
that will guard
|
|
.IR r .
|
|
.PP
|
|
A
|
|
.B Ref
|
|
contains a
|
|
.B long
|
|
that can be incremented and decremented atomically:
|
|
.I Incref
|
|
increments the
|
|
.I Ref
|
|
in one atomic operation.
|
|
.I Decref
|
|
atomically decrements the
|
|
.B Ref
|
|
and returns zero if the resulting value is zero, non-zero otherwise.
|
|
.SH SOURCE
|
|
.B \*9/src/lib9/qlock.c
|
|
.br
|
|
.B \*9/src/libthread
|
|
.SH BUGS
|
|
.B Locks
|
|
are not always spin locks.
|
|
Instead they are usually implemented using the
|
|
.I pthreads
|
|
library's
|
|
.BR pthread_mutex_t ,
|
|
whose implementation method is not defined.
|
|
.PP
|
|
On
|
|
.IR pthreads -based
|
|
systems, the implementation of
|
|
.B Lock
|
|
never calls
|
|
.I pthread_mutex_destroy
|
|
to free the
|
|
.BR pthread_mutex_t 's.
|
|
This leads to resource leaks on FreeBSD 5
|
|
(though not on Linux 2.6, where
|
|
.I pthread_mutex_destroy
|
|
is a no-op).
|
|
.BR
|
|
.PP
|
|
On systems that do not have a usable
|
|
.I pthreads
|
|
implementation, the
|
|
.B Lock
|
|
implementation provided by
|
|
.I libthread
|
|
is still not exactly a spin lock.
|
|
After each unsuccessful attempt,
|
|
.I lock
|
|
calls
|
|
.B sleep(0)
|
|
to yield the CPU; this handles the common case
|
|
where some other process holds the lock.
|
|
After a thousand unsuccessful attempts,
|
|
.I lock
|
|
sleeps for 100ms between attempts.
|
|
Another another thousand unsuccessful attempts,
|
|
.I lock
|
|
sleeps for a full second between attempts.
|
|
.B Locks
|
|
are not intended to be held for long periods of time.
|
|
The 100ms and full second sleeps are only heuristics to
|
|
avoid tying up the CPU when a process deadlocks.
|
|
As discussed above,
|
|
if a lock is to be held for much more than a few instructions,
|
|
the queueing lock types should be almost always be used.
|